AA2FM Series Axial piston fixed motor

Product show and brief introduction

Open and closed circuits

Series 6
Sizes 56...90
Nominal pressure 40MPa
Peak pressure 45MPa
SAE version

Features

- Farge variety of available nominal sizes allows exact adjustment to the application
- High power density
- Very high total efficiency
- High starting efficiency
- Working ports SAE flange or thread
- Optional with integrated pressure relief valve
- Bent-axis design

Model Code

AA2F	М	80	/6	1	W	-V	U	D	027	F
Axial piston unit	Operating mode	Sizes	Series	Index	Direction of rotation	Seal material	Drive shaft	Mounting flange	Working ports	Speed sensors
AA2F: Bent-axis design, fixed	M: Motor	56 63 80 90	6	1	(Viewed on drive shaft) W: bidirectional	V: FKM (fluor- oelastomer)	See below	D/X: 4-hole SAE J744	See below	No code: without speed sensor F: prepared for HDD speed sensor

Drive shafts

Size		56	63	80	90
	S	√	\checkmark	/	/
Spined shaft DIN 5480	Т	\checkmark	√	/	/
Spiried shall DIN 5460	U	/	1	\checkmark	\checkmark
	Q	1	1	√	√

Working ports

Size		56	63	80	90
020: SAE working ports A and B at side,opposite	without valve	$\sqrt{}$	√	√	√
027: SAE working ports A and B at side, opposite	Flushing and boost pressure valve mounted	√	√	√	√

 $\sqrt{\ }$ = available / = not available

AA2FM... 02

Technical Data

Hydraulic fluid

The AA2FM fixed displacement motor is suitable for use with mineral oil

Viscosity range

We recommend that a viscosity (at operating temperature) for optimum efficiently and service life purposes of

V_{opt} = optimum viscosity16...36mm²/s

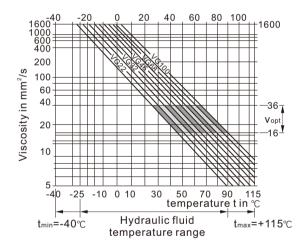
Be chosen, taken the tank temperature (open circuit) into account.

Limits of viscosity range

The following values apply in extreme cases:

 $Vmin = 5 mm^2/s$

short term(t < 3 min)at max.permitted temperature tmax=115 $^{\circ}$ C


 $Vmax = 1600 \text{ mm}^2/\text{s}$

short term(t < 3 min) with cold start(P < 3MPa,

 $n \leq 1000$ rpm $t_{min} = -40$ °C)

Note that the maximun hydraulic fluid temperature must not be exceeded locally either (e.g. bearing area). The temperature in the bearing area is-depending on pressure and speed-up to 12 K higher than the average case drain temperature.

Setlection diagram

Details regarding the choice of hydraulic fluid

The correct selection of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature, in an open circuit the tank temperature.

The hydraulic fliuid should be selected so that within the operating temperature range, the operating viscosity lies within the optimun range (V_{opt})(see shaded section of the selection diagram). We recommend that the highest possible viscosity range should be chosen in each case.

Example:At an ambient temperature of $X^{\circ}\mathbb{C}$ an operating temperature of $60^{\circ}\mathbb{C}$ is set in the circuit. In the optimun operating viscosity range(V_{opt} ; shaded area) this corresponds to the viscosity classes VG 46 or VG68; to be selected: VG 68.

Please note: The leakage fluid temperature, which is affected by pressure and rotational spaad,is always higher than the tank temperature . At no point in the system may the temperature be higher than 115° C.

Filtartion

The finer the filtration, the cleaner the fluid and the longer the service life of the axial piston unit.

To ensure proper function of the axial piston unit, the hydraulic fluid must have a cleanliness level of at least

20/18/15 according to ISO 4406.

At very high hydraulic fluid temperatures (90°C to max.115°C),a cleanliness level of at least

19/17/14 according to ISO 4406 is required.

Operational pressure range

maximum pressure in port A or B

maxima	maximum procedure in portitor B						
size		shaft	nominal pressure	maximum pressure			
56,63		S	35MPa	40MPa			
		Т	40MPa	45MPa			
80,90		U	40MPa	45MPa			
		Q	30MPa	35MPa			

Direction of flow

Direction of rotation, viewed on drive shaft					
clockwise	counter-clockwise				
A to B	B to A				

Speed range

No limit to minimum speed n_{min} . If uniformity of motion is required, speed n_{min} must not be less than 50 rpm.

Shaft seal

Allowable load pressure.

The service life of the shaft seal is affected by the rotational speed of the motor and the case drain pressure.

The allowable value of intermittent case drain pressure depends on the speed of the motor. Short-term (t<5 min) allow the absolute pressure peak to 1MPa. The case drain pressure during average continuous operation shall not exceed 0.3MPa absolute. The pressure inside the housing must be equal to or greater than the external pressure of the shaft seal.

Symbol

Connections

A, B Work port T Drain ports

Technical Data

• Teble of values (the oretical values, ignoring η_{min} and η_{v} ; values rounded)

Size			56	63	80	90	
Displacement V _g		Vg	mL/r	56.1	63	80.4	90.0
Maximum speed		Nmax	min ⁻¹	5000	5000	4500	4500
		n _{max} 1)	min ⁻¹	5500	5500	5000	5000
Maximum flow at n _{max}		Qvmax	L/min	280	315	360	405
Equivalent torque T _k		Nm/MPa	8.9	10	12.7	14.3	
Torque	△P=35 MPa	Т	Nm	312	350	445	501
	△P=40 MPa	Т	Nm	356	400	508	572
Case volume			L	0.45	0.45	0.55	0.55
Inertia moment of drive shaft		kgm²	0.0042	0.0042	0.0072	0.0072	
Weight(approx.)		kg	18	18	23	23	

¹⁾ Intermittent maximum speed:overspeed for unload and overhauling processes, t < 5s and $\triangle P < 15$ Mpa.

Determining the size

Flow
$$q_v = \frac{V_g \times n}{1000 \times \eta_v}$$
 (L/min)

Output speed
$$n = \frac{q_v \times 1000 \times \eta_v}{Vq}$$
 (min-1)

Torque
$$T = \frac{V_g \times \triangle P \times \eta_{mh}}{20\pi}$$
 (Nm)

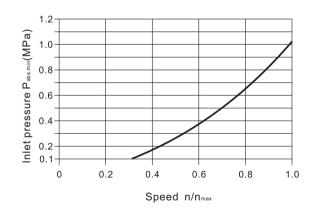
Power P =
$$\frac{2\pi \times T \times n}{60000}$$
 = $\frac{T \times n}{9549}$ = $\frac{q_v \times \triangle P}{600 \times n_t}$ (kW)

V_g = Displacement per revolution in mL/r

T = Torque in Nm

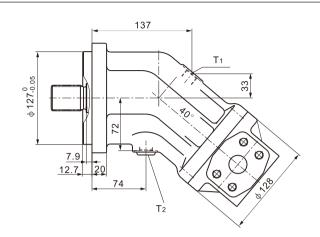
 \triangle P. = Differential pressure in MPa

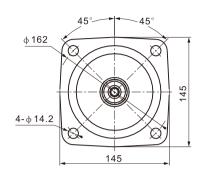
n = Speed in rpm


 η_v = Volumetric efficiency

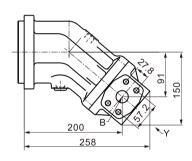
 η_{mh} = Mechanical-hydraulic efficiency

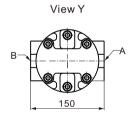
 η_t = Overall efficiency


Minimum inlet pressure for A(B)


To avoid damage to the motor, it must be ensured that there is a minimum inlet pressure in the oil inlet area, which is related to the speed of the motor.

■ Installation dimensions Size 56,63

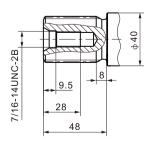



Ports

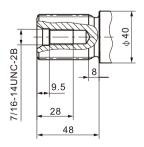
A,B Service line ports (see port plates) T_1T_2 Case drain ports (T_1 plugged) M18×1.5

Port plates

020 SAE flange ports, at side

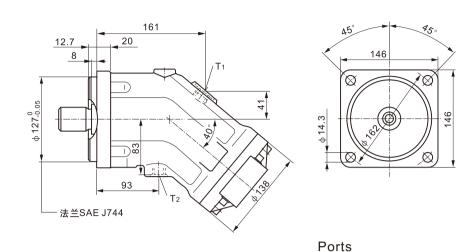


A,B Service line ports(high pressure series) Fastening screws

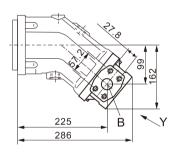

SAE 1" M12,17 deep

Shaft ends

S Splined shaft 1 1/4" 14T 12/24DP P_N = 35 MPa

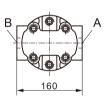


S Splined shaft 1 3/8" 21T 16/32DP P_N = 40 MPa



■ Installation dimensions Size 80,90

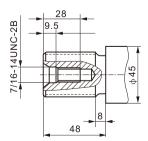
Port plates


020 SAE flange ports, at side

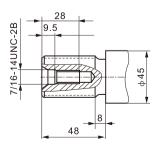
View Y

Service line ports (see port plates)
Case drain ports (T, plugged) M18×1.5

A,B T₁T₂

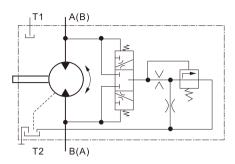


A,B Service line ports(high pressure series)
Fastening screws


SAE 1" M12,17 deep

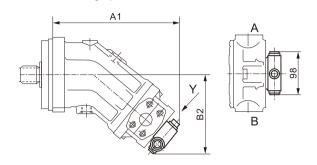
Shaft ends

U Splined shaft 1 3/8" 21T 16/32DP PN = 40 MPa


Q Splined shaft 1 1/4" 14T 12/24DP P_N = 30 MPa

Flushing and boost pressure valve

Circuit diagram


Overview

The flushing and boost pressure valve is used in closed circuits for the removal of heat and to ensure a minimum boost pressure level.

Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the leakage. The removed hydraulic fluid must be replaced by cooled hydraulic fluid from the boost pump.

When setting the charging pressure of the pump in a closed circuit, the opening pressure of the charging valve must be considered (1.6MPa, fixed set value)

Port plates027 SAE flange ports, at side

size	A1	B2	
56,63	263	159	
80,90	297	173.5	

Flushing flow (at low pressure △P=2. 5MPa)

size	flushing flow
56,63	3.5L/min
80,90	5L/min

The flushing flows deviating from the values in the table, please state the required flushing flow when ordering.

The flushing flow without orifice is approx.12 to 14 L/min.